
Journal of Computational Physics155,410–438 (1999)

Article ID jcph.1999.6345, available online at http://www.idealibrary.com on

A PDE-Based Fast Local Level Set Method1

Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao,2 and Myungjoo Kang

Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555

Received April 16, 1998; revised July 22, 1999

We develop a fast method to localize the level set method of Osher and Sethian
(1988,J. Comput. Phys.79, 12) and address two important issues that are intrinsic to
the level set method: (a) how to extend a quantity that is given only on the interface
to a neighborhood of the interface; (b) how to reset the level set function to be
a signed distance function to the interface efficiently without appreciably moving
the interface. This fast local level set method reduces the computational effort by
one order of magnitude, works in as much generality as the original one, and is
conceptually simple and easy to implement. Our approach differs from previous
related works in that we extract all the information needed from the level set function
(or functions in multiphase flow) and do not need to find explicitly the location of
the interface in the space domain. The complexity of our method to do tasks such
as extension and distance reinitialization isO(N), whereN is the number of points
in space, notO(N log N) as in works by Sethian (1996,Proc. Nat. Acad. Sci. 93,
1591) and Helmsen and co-workers (1996,SPIE Microlithography IX, p. 253). This
complexity estimation is also valid for quite general geometrically based front motion
for our localized method. c© 1999 Academic Press

1. INTRODUCTION

Since its inception in [20], the level set method has been used to capture rather than
track interfaces. The advantages of this capturing approach are well known by now. The
method is stable, the equations are not unnecessarily stiff, geometric quantities such as
curvature become easy to compute, and three-dimensional problems present no difficulties.
See [22, 18, 16] for a survey and references. Recent improvements include the computation
of multiphase flows in [27, 28] and unstable fronts in [10, 11].

As pointed out in [1], “one drawback of the technique stems from the expense; by
embedding the interface as the level set of a higher dimensional function, a one dimensional

1 Research supported by DARPA/NSF Grant on thin films, NSF Grant DMS 9706827, and ARO Grant DAAG
55-98-1-0323.

2 Current address: Department of Mathematics, University of California, Irvine, CA 92697. E-mail: zhao@
math.uci.edu.

410

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 411

interface problem has been transformed into a two dimensional problem. In three space
dimensions, considerable computational labor(O(n3)) is required per time step.”

We remark that there are physical problems, e.g., multiphase incompressible fluid dy-
namics [26, 5], compressible fluid dynamics [17], and melting ice problems [7], in which the
additional level set equation adds only a fraction of extra computing time. This is because
the underlying field equations must also be solved throughout all space.

In this paper we localize the level set method. Our localization works in as much generality
as does the original method and all of its recent variants [27, 28], but requires an order of
magnitude less computing effort.

Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our approach
differs from theirs in that we use only the values of the level set function (or functions, for
multiphase flow) and not the explicit location of points in the domain. Our implementation
is easy and straightforward and has been used in [9, 14, 27, 28].

Our approach is partial differential equation (PDE) based, in the sense that our local-
ization, extension, and reinitialization are all based on solving different PDEs. This leads
to a simple, accurate, and flexible method. Equations (10) and (11) of Section 2 enable us
to update the level set function (or functions in the multiphase case) without any stability
problems at the boundary of the tube used to localize the evolution. Such equations are new
and do not appear in [1]. In fact, the technique used in [1] has boundary stability problems
because Eq. (2) or (3) (the evolution equation of the level set function) is solved right up to
this boundary. In contrast, in our method, the speed of evolution degenerates smoothly to 0
at this boundary. This is achieved by modifying the evolution of the level set function near
the tube boundary but away from the interface. This modification effectively eliminates the
boundary stability issues in [1] and has no impact on the correct evolution of the interface.
The reinitialization step will reset the level set function to be a signed distance function to
the front. There are no boundary issues in our distance reinitialization or extension of ve-
locity field off the interface. Both of these tasks involve simple hyperbolic equations where
characteristics flow out of the tube boundary; thus, upwind schemes remove all boundary
difficulties. We make use of the state-of-the-art high order ENO [20, 21] and WENO [13]
schemes to do updates, whenever it is appropriate to do so.

The local level set algorithm presented here is almost as easy to program as the global
level set method, in-any number of dimensions. Our technique as described in Section 2
requires no complicated data structures to store the information about the tubes around the
interface other than the ordinary array; thus, we eliminate the complexity and overhead of
updating such data structures.

Another very interesting fast method was recently devised in [23] and [12] in the special
case when the normal velocity of the front is a given nonnegative function of position. The
key observation there is that the problem can be reduced to first arrival time (see also [19])
and that this time-independent equation can be solved by space marching using a first order
accurate upwind scheme, as is commonly done, e.g., in the computation of steady supersonic
flows. The complexity of the method developed in [23] and [12] is formallyO(N log N),
whereN is the number of grid points in space. The complexity of our method isO(N),
which is optimal in the sense that it is proportional to the number of points near the front.

Our method works easily in the presence of topological changes, for general speed
functions and for a wide class of numerical discretizations, as we demonstrate in Section 5
below. Unlike the method in [12, 23], which is necessarily first order accurate, our method
is of an arbitrarily high order of accuracy.

412 PENG ET AL.

This paper also addresses two important issues in level set computation: extension and
reinitialization.

To move the interface, we need the normal velocityun in a neighborhood of the interface.
In some applications, such as in mean curvature flow,un is naturally given globally or at least
near the front. However, in some other applications, the normal velocityun is only known
at the interface. The Stefan problem and Hele–Shaw flow problems fall into this category
[7, 9]. We propose in this paper a PDE-based method to extend a quantity that is defined
on the interface to a neighborhood of it along the direction normal to the interface. Our
approach is conceptually straightforward and easy to implement. It has been successfully
used in [7, 9] and elsewhere.

The extension step was first introduced and analyzed in [27]. In a recent interesting paper
[2], Adalsteinsson and Sethian obtained a fast global velocity extension method. Their
method is closely tied to the fast marching method of [23, 12]. Our extension method has
lower formal order of complexity (O(N) instead ofO(N log N)), although it remains to be
seen which is faster for real local level set calculations. We shall use our method to obtain
a very successful level set based computation of an unstable vortex sheet (see Fig. 11b
below), considerably improving the results in [11].

In most cases, it is impossible to maintain the level set function as a signed distance
function to the moving interface in the advection step. Flat and/or steep regions develop
as the interface moves, rendering the computation and contour plotting at those places
inaccurate. For numerical reasons, we need to resurrect the level set function to be close
to a distance function from time to time. This is the so called distance reinitialization of
the level set function. This process can be quite complicated, expensive, and have sub-
tle by-products. A straightforward reinitialization by finding the location of the front and
computing the signed distance to it is very expensive and also may bring some unpleasant
side effects, such as oscillations in curvature, which is the Laplacian of distance function
[15]. This is highly undesirable in situations where such geometric quantities play a crucial
role. In [26], the reinitialization is achieved by solving a time-dependent Hamilton–Jacobi
type equation to its steady state. This is the desired signed distance function. This ap-
proach works well when the level set function is initially not far away from a distance
function, but may become too slow when the level set function is flat near the interface,
or even worse, it may move the interface across grid points when the interface becomes
steep. We propose here a variant to the original Hamilton–Jacobi equation in [26] and a
new approximation to the sign function in the equation to ensure that the interface does
not move across the grid points, if it moves at all. Our numerical computations verify
this.

The format of our paper is as follows. In Section 2, we review the standard level set
formulation and present our localization algorithm. In Section 3, we derive the PDE used to
extend a quantity on an interface away from the interface. We also discuss the appropriate
numerical implementation. In Section 4 we discuss the level set reinitialization in some
detail. Numerical examples that are used to demonstrate specific declarations appear near the
related text, while the more involved examples that use several of the techniques presented
in this paper are presented in Section 5. These new examples include the vortex sheet
calculation already mentioned, a double bubble minimizer using three level set functions,
the merging of 100 bubbles under mean curvature flow, and the motion of bubbles under
curvature dependent acceleration.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 413

2. THE LEVEL SET FORMULATION AND ITS LOCALIZATION

We begin by reviewing the standard level set method, as first developed in [20], and set
the conventions that will be followed through out the paper.

Consider a closed moving interface0(t) in Rn with codimension 1. LetÄ(t) be the
region (possibly multiconnected) that0(t) encloses. We associate withÄ(t) an auxiliary
functionφ(x, t), called the level set function, which is Lipschitz continuous and satisfies
the following conditions 

φ(x, t) < 0 in Ä(t)

φ(x, t) = 0 on0(t)

φ(x, t) > 0 in Rn\Ǟ(t),

(1)

wherex ∈ Rn, t ∈ R+. Note that our choice of the sign ofφ(x, t) is opposite to the popular
sign convention. We have found this choice more convenient. See Fig. 1.

Conversely, if we knowφ, we may locate the interface by finding the zero level set ofφ.
That is,0(t)={x : φ(x, t)= 0}. So moving the interface is equivalent to updatingφ, which
can be done by solving a Hamilton–Jacobi type equation. The equation can be derived
simply as follows.

Supposex(t) is a particle trajectory on the interface0(t) moving with velocityEu= ẋ(t).
By definitionφ(x(t), t)= 0. Differentiating with respect tot , we get

φt + Eu · ∇φ = 0. (2)

By projecting the velocityEu onto the direction̂n normal to the interface, Eq. (2) becomes

φt + un|∇φ| = 0. (3)

Typically, the interface0(t) has a prescribed velocityEu or normal velocityun, which
might be a function of space variablex, time t , the normal direction̂n, the local mean
curvatureκ, or some global quantities like the Hausdorff measure|0(t)| of the interface
or the Lesbegue measure|Ä(t)| of Ä(t), or some external physics to which the motion of

FIG. 1. (a) Zero contour ofφ representing the front0. (b) Surface of−φ.

414 PENG ET AL.

0(t) is coupled. One of the nice features of level set formulation is that these geometric
quantities have simple representations in terms ofφ,

n̂ = ∇φ

|∇φ| (4)

κ = ∇ · ∇φ

|∇φ| (5)

|0(t)| =
∫

δ(φ)|∇φ| dx (6)

|Ä(t)| =
∫

H(−φ) dx, (7)

whereδ(φ) is the 1Dδ-function,H(φ) is the 1D heaviside function which takes 0 forφ < 0
and 1 otherwise, andκ is chosen such that a sphere has positive mean curvature equal to
the reciprocal of its radius. In 2D,|0(t)| is simply the arclength of0(t) and|Ä(t)| the area
of Ä(t), while in 3D,|0(t)| is the surface area of0(t) and|Ä(t)| the volume ofÄ(t).

The level set method is just to extend Eq. (3), or more generally (2), to be valid throughout
the space and pick up the zero level set as the front at all later time.

We point out here two issues of practical importance.
First, extendingun off the interface is not always routine. Localization helps confine

the definition ofun to a small neighborhood of0(t)={x : φ(x, t)= 0}. In Section 3, we
describe a fast method to extendun continuously off the front.

Second, for numerical accuracy, the level set function must stay well behaved in the sense
that, except for isolated points,

0 < c ≤ |∇φ| ≤ C

for some constantsc andC. In fact, it is desirable for many problems thatφ(x, t) be a
signed distance function, i.e.,

|∇φ| = 1.

Yet the solution of Eq. (2) or (3) often becomes very flat and/or steep at the front0(t).
So a procedure is needed to resurrectφ(x, t) so that it behaves well in a neighborhood of
the front. Such a procedure is commonly called reinitialization. Again localization makes it
only necessary to perform reinitialization within a narrow region around the front. We will
address this issue in Section 4.

Now we introduce an algorithm to localize the level set method. For simplicity of pre-
sentation, we describe the algorithm in 2D. The idea can be extended to 3D without any
change.

Let 0< β < γ be two constants which are comparable to1x whose values will be de-
termined below. For a given open regionÄ in Rn with boundary00, we define a level
set functionφ0(x) satisfying (1). If necessary, apply the reinitialization step described in
Section 4 to setφ0(x) to bed0(x), the signed distance function to the front00. Around00

we define a tube with widthγ by

T0 = {x : |φ0(x)| < γ }. (8)

A PDE-BASED FAST LOCAL LEVEL SET METHOD 415

Actually we only needφ0(x) to coincide withd0(x) in T0.
Next, letc be a cut-off function:

c(φ) =


1 if |φ| ≤ β

(|φ| − γ)2(2|φ| + γ − 3β)/(γ − β)3 if β < |φ| ≤ γ

0 if |φ| > γ.

(9)

We update00 by solving the following equation,

φt + c(φ)Eu · ∇φ = 0 (10)

or

φt + c(φ)un|∇φ| = 0, (11)

on T0 with initial dataφ0(x) for one time step and get̃φ1(x). Refer to Fig. 2. The time
step is chosen such that the front moves less than one grid point. This is equivalent to the
CFL condition which requires1t |un|< 1x uniformly on the front. If the velocityEu or un

is only given on00, an extension step is needed to extendEu or un to T0. The reason we
introduced the cut-off function in (10) and (11) is to prevent numerical oscillations at the
tube boundary.

The new location of the front is given by01={x : φ̃1(x) = 0}. Let d1(x) be the signed
distance function to01. Of course,d1(x) is not known to us. All we have is̃φ1(x).

To move the front further, we need the shifted tube

T1 = {x : |d1(x)| < γ }, (12)

FIG. 2. Computation is only performed on the marked region around0.

416 PENG ET AL.

so we must construct a new level set functionφ1(x) from φ̃1(x) such that

φ1(x) = d1(x) for |d1(x)| < γ. (13)

This can be achieved via a step described below. First we discuss the necessity and some
difficulties involved in doing this.

In the updating step above, we solve the correct equation only in a tube of radiusβ. In
the region{x : β < |φ0(x)|< γ }, the motion is modified by the cut-off function. Outside
the tubeT0, we do not updatẽφ1 at all. A steep gradient develops at the region near the
boundary of the tubeT0 in the direction of motion of the interface. Obviously,φ̃1(x) is not
a signed distance function to01. See Fig. 3b. To reset̃φ1 to be a signed distance function
in a neighborhood of01 of width γ , the reinitialization must be performed on a region that
containsT1. Since the front moves less than one grid point, we can choose this region to
be

N0 = {x : |φ0(x + y)| < γ, for certain|y| < 1x}. (14)

Next we perform the reinitialization step onN0, starting withφ̃1(x), and obtaind1(x),
the signed distance function to01. Our new level set function is defined by

φ1(x) =


−γ if d1(x) < −γ

d1(x) if |d1(x)| ≤ γ

γ if d1(x) > γ.

(15)

FIG. 3. The current result is plotted with a solid line, while the previous result(s) is shown with a dashed line.
(a) The initial local level set profile. (b) After moving one step. Note the steep gradient developing at the right
tube boundary. (c) After reinitialization. (d) The final local level set profile after cut-off.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 417

Then we defineT1 andN1 as follows:

T1 = {x : |d1(x)| < γ } (16)

N1 = {x : |φ1(x + y)| < γ, for some|y| < 1x}. (17)

HereT1 is the region where the computation in the next time step will be performed, and
N1 is the region on which the reinitialization will be performed after the next time step.

We are now ready to move01 one more step. Iterating the above-described steps will
move the front further. This process is depicted in Fig. 3.

The actual numerical values ofβ andγ depend on the width of the stencil of the schemes
used to approximate the spatial derivatives. In our computation, we chooseβ = 21x, γ =
41x for a second order ENO scheme [21] or a third order WENO scheme [13], andβ = 31x,

γ = 61x for a third order ENO scheme [21] or a fifth order WENO scheme [13].
We remark here that our extension and reinitialization are done by solving a hyperbolic

equation with characteristics flowing out of the tube. No boundary conditions are needed.
This is enforced numerically by using an upwind scheme. See Sections 3 and 4 for details.

Having described the local level set method in a semidiscrete way, we now outline the
algorithm in the fully discrete form.

MAIN ALGORITHM .

Step 0. Initialize. Given the interface0, construct an associated level set function
φ. If necessary, apply the reinitialization step described in section 4 globally to setφ be a
signed distance function to0.

Step 1. Compute velocity. Calculateun or Eu fromφ or the physical problem coupled
with φ on or near the zero level set ofφ.

Step 2. Extend (if necessary). Extendun or Eu to tubeT ={(xi , yj) : |φi j | ≤ γ } by
the method described in Section 3.

Step 3. Advance. Updateφ in tubeT for one time step to get̃φ by an ODE time
stepping method. See remark 2 below.

Step 4. Reinitialize. Apply the reinitialization step tõφ on the tubeN={(xi , yj) :
min−1≤ν,µ≤1|φi+ν j+µ| ≤ γ }. Define the newφ by (15). Go back to step 1.

We make several remarks here.

Remark 1. The most straightforward way to implement the above algorithm is to store
the values of the level set function(s) and other related quantities at the grid points in 2D
arrays. In the updating step, we search through each grid point and test if it falls into the tubes
by checking the value of level set function at that point. If it does, then do the computation;
otherwise, nothing is done. While easy to code, the drawback of this implementation is
that we have to go through all the grid points and do a comparison there. This is not
really necessary since computation is performed only at the grid points within the tube
T in the main time step and within tubeN in the reinitialization step, and such points
usually constitute only a small fraction of the total grid points. As the number of grid
points or dimension increase, this overhead takes up a considerable amount of CPU time.
To overcome this drawback, we introduce an extra 2D array mask of the same size asφ

that can be used to differentiate the grid points in and out of the tubes and two equal-sized
1D arraysindex1 andindex2 that store the index of the grid points in the tubeN and whose
size is on the order ofO(N). These arrays are initialized by a procedure like the following

418 PENG ET AL.

k = 1;

for i = 1 to Nx,

for j = 1 to Ny

mask(i,j) = 0;

if |phi(i,j)| < gamma

mask(i,j) = 2; index1(k) = i; index2(k) = j; k=k+1;

else if |phi(p,q)| < gamma and mask(p,q) == 0 for p=i-1,i+1,

q=j-1,j+1

mask(p,q) = 1; index1(k) = p; index2(k) = q; k=k+1;

Thus, tubeT corresponds to grid points where mask(i, j)= 2 and tubeN corresponds to
mask(i, j)= 1 or 2. This tube construction step needsO(N2) operations and is performed
just once per main time step. For all the other steps, we only needO(N) operations since
the computation is done in a 1D loop. For example, to computeφx at the grid points within
the tubeT , we can use the following pseudo-code

for k = 1 to K

if (mask(index1(k),index2(k)) == 2)

phi_x(index1(k),index2(k)) = (phi(index1(k)+1,index2(k))

- phi(index1(k)-1, index2(k))/

(2*dx);

whereK is the number of grid points within the tubeN found in the construction step
above. After the level set function is updated in the tubeT , we reinitializeφ over the tube
N in step 4 by a procedure like

for k=1 to K

phi_new(index1(k),index2(k)) = phi(index1(k),index2(k) + ...

We then construct the new, shifted tubes by going back to our tube construction step above.
Analogous statements are also true in 3D. This gives us an algorithm of approximately
O(N) complexity in 2D andO(N2) complexity in 3D, as will be shown in Section 5.

A truly O(N) implementation of the main algorithm is possible by replacing the simple
tube construction step above with a procedure that require onlyO(N) operations. We have
done this in all the numerical experiments in Section 5 with very little change in our results.
We recommend the implementation presented here because of its programming simplicity.

Remark 2. The solutions to Eq. (2) or (3) are often only uniformly continuous with
discontinuous derivatives, no matter how smooth the initial data are [20, 21]. Simple central
differencing is not appropriate here to approximate the space derivatives. Instead, we use
ENO type schemes for Hamilton–Jacobi equations as developed in [20, 21] or WENO
schemes developed in [13].

Remark 3. The time stepping methods we used are the TVD Runge–Kutta schemes
devised in [24]. Consider the system of ODEs,

{
dφ

dt = L(φ)

φ(0) = φ0,
(18)

A PDE-BASED FAST LOCAL LEVEL SET METHOD 419

whereL is some spatial operator. The second order method at thenth step is{
φ̃n+1 = φn +1t L(φn)

φn+1 = φn + 1t
2 [L(φn)+ L(φ̃n+1)].

(19)

The third order method at thenth step is
φ̃n+1 = φn +1t L(φn)

φ̃n+ 1
2 = φn + 1t

4 [L(φn)+ L(φ̃n+1)]

φn+1 = φn + 1t
6

[
L(φn)+ 4L

(
φ̃n+ 1

2
)+ L(φ̃n+1)

]
.

(20)

Remark 4. If the front moves very little in one time step, there is no need to reinitialize
every step. We can iterate using only Step 1, 2 and 3 until reinitialization is triggered. Then
we go to Step 4. We shall discuss this further in Section 4.

Remark 5. If the motion of the interface involves sensitive quantities such as derivatives
of curvature, we need to choose biggerβ andγ and compute these quantities in an even
narrower tube of widthα, where 0< α < β < γ . In this case, we chooseα= 21x, β = 41x,

γ = 61x for a 2nd order ENO scheme [21] or a 3rd order WENO scheme [13], andα =
31x, β = 61x, γ = 91x for a 3rd order ENO scheme [21] or a 5th order WENO scheme
[13]. Introducing an extra tube also enable us to monitor the behavior of the level set function
and the movement of the front and trigger the reinitialization only when necessary. We will
discuss this further in Section 4.

3. EXTENDING A QUANTITY OFF AN INTERFACE

In the level set formulation, we need the velocityEu or normal velocityun in a neighborhood
of the interface0(t). In some applications,Eu or un is naturally defined globally or at least
near the front. Such examples include motion with a constant speed and mean curvature
flow [20]. But in some other applications,Eu or un is only given on the interface. Away from
the interface, it is not defined at all. The Stefan problem [7] and Hele–Shaw flows [9] are
such examples. There are also situations where we need to extend other quantities defined
on the interface to a neighborhood of the interface. In [7], a PDE-based method was used
to do this, and this is the approach that we adopt here. This method is straightforward and
easy to implement. We note that the same method was originally proposed and analyzed in
the appendix of [27], but the authors did not pursue it there.

Suppose we have a quantityq defined on the interface0(t). The most natural way to
extendq off 0(t) is to letq be a constant along the curve normal to0(t). This suggests the
following hyperbolic PDE,

qt + S(φ)
∇φ

|∇φ| · ∇q = 0, (21)

whereS(φ) is the signature function ofφ defined as

S(φ) =


−1 if φ < 0

0 if φ = 0

+1 if φ > 0.

(22)

420 PENG ET AL.

The characteristics of Eq. (21) are exactly those that are normal to the level set ofφ and
pointing away from0(t).

Equation (21) is a particular case of the following general Hamilton–Jacobi equation:

qt + H(∇q, x, t) = 0, x ∈ Rn, t > 0. (23)

Accurate and robust numerical schemes exist to compute approximate solutions to
Eq. (23). See, for example, [21, 20, 13]. Yet usually in the extension step, numerical accu-
racy of the method used is not an issue, as long as the method extends the quantity under
consideration in a sensible way. In the following, we shall use a first order upwind scheme
coupled with a forward Euler time discretization. For simplicity of presentation, we will
only write down the formula for the 2D case and drop the explicit(x, y) andt dependence,
which is understood to exist in the scheme in a simple fashion, i.e., by fixing(x, y) andt
to be their grid values in the numerical Hamiltonian. The extension to higher dimension is
straightforward.

We approximateS(φ) by Sδ(φ)=φ/
√

φ2+ δ2, whereδ is a small smoothing parameter
which can be taken as1x, and denote the nodal value ofSδ(φ) assi j . We compute the

fixed quantitieŝn= (nx, ny)= (φx/
√

(φ2
x +φ2

y), φy/
√

(φ2
x +φ2

y)) by central differencing,

and usêni j = (nx
i j , ny

i j) to denote their nodal values. The above method reads

qn+1
i j = qn

i j −1t

{(
si j n

x
i j

)+ qi j − qi−1 j

1x
+ (si j n

x
i j

)− qi+1 j − qi j

1x

+ (si j n
y
i j

)+ qi j − qi j−1

1y
+ (si j n

y
i j

)− qi j+1− qi j

1y

}
, (24)

where(x)+ = max(x, 0), (x)− =min(x, 0). The nodal values ofq on the stencils that the
interface cut through can be computed by interpolation [7, 9]. As pointed out in Section 2, no
internal boundary condition is needed because the characteristics of the PDE (21) flow out
of the interface0={x : φ(x, t)= 0}. This is numerically enforced naturally by the upwind
scheme, since we use only the value ofφ on the nodes biased to0.

We consider the following example. Suppose

L =
{

(r, θ) : r (θ) = 0.1λ+ 0.7(1− λ), λ = θ

6π
, 0≤ θ < 6π

}
is a spiral on the domainD= [−1, 1]× [−1, 1] that orbits the origin three times. LetÄ be
the region consisting of all points with distance toL less than 6/128, andφ be the signed
distance function associated withÄ. We use a 128× 128 grid and define a quantityq which
is equal toθ on points with distance to∂Ä less than1x and 0 otherwise. See Fig. 4 for the
result of the extension using the above scheme. Section 5 contains a more elaborate example
that uses the extension method described in this section. This is a very successful level set
based calculation of an unstable vortex sheet, improving the results of [11] considerably.

4. REINITIALIZATION

It is numerically desirable to keepφ(x, t) close to a signed distance function. For general
Eu or un, it is impossible to preventφ(x, t) from deviating away from a signed distance

A PDE-BASED FAST LOCAL LEVEL SET METHOD 421

FIG. 4. Extension. (a) Zero contour ofφ. (b) Initial q. (c) Extend for five steps. (d) Extend for ten steps.

function, except in some very special cases [27]. Typically, flat and/or steep regions will
develop at the interface, making further computation and contour plotting highly inaccurate.

As an illustrative example, we consider the simple case of the shrinking of a unit circle in
2D or a sphere in 3D with its mean curvature. In the level set formulation, this is equivalent
to solving the following PDE:φt (x, t) = |∇φ|∇ ·

(
∇φ

|∇φ|
)

φ(x, 0) = |x| − 1.
(25)

This equation is rotationally invariant. This suggests that we look for solution of the form
φ(x, t)=φ(r, t), wherer = |x|. We have

|∇φ| = ∂φ

∂r

∇ · ∇φ

|∇φ| =
1

r
.

Then Eq. (25) becomes {
∂φ

∂t = 1
r

∂φ

∂r

φ(r, 0) = r − 1
(26)

422 PENG ET AL.

which has the well-known solution

φ(r, t) =
√

r 2+ 2t − 1. (27)

The interface is located atr =√1− 2t . On the interface,|∇φ| =√1− 2t . Clearly,
φ(x, t) becomes more and more flat at the interface and becomes totally flat just before
vanishing att = 1

2.
Even in this simple case, a direct numerical implementation of Eq. (25) turns out to be

problematic at the center, where|∇φ| is always zero. A spike appears at the center after one
step. See Fig. 5b. As the interface moves near to the center, the computation becomes highly
inaccurate. For simple cases such as this one, we know in advance where the problem will
arise, and we can kill the spike by enforcing explicitly an internal boundary condition at
the center. For example,

φ0,0 = 1

3
(φ−1,0+ φ1,0+ φ0,−1+ φ0,1)− 1

12
(φ−2,0+ φ2,0+ φ0,−2+ φ0,2). (28)

But in general, we do not know in advance where the problem will arise, and such a
condition is hard to enforce. A reinitialization step will effectively eliminate such problems
without the explicit knowledge of their locations. This is a very important effect of level set
reinitialization. In Fig. 5, we plot the errors in computing the radius of the shrinking circle
with and without the reinitialization step, and in each case, with and without enforcing the
internal boundary condition (28).

Generally, a procedure is needed to reset the level set functionφ(x, t) to be a signed
distance function to the front0(t). One may ask if it is legal to do so. Theoretically, this is
justified in [8] and [4], where the authors showed that the interface0(t)={x : φ(x, t)= 0}
does not depend on the particular choice of the initial dataφ(x, 0), as long as its zero
level set coincides with0(0). Reinitialization is simply the process of replacingφ(x, t)
by another functioñφ(x, t) that has the same zero contour asφ(x, t) but behaves better
and then taking this new functioñφ(x, t) as the initial data to use until the next round of
reinitialization.

A straightforward way to reinitialize is to find the location of the front with some inter-
polation technique and then compute the signed distance function to this front, as is done in
[15]. This brute force approach has the advantage that it does not move the interface up to
the numerical accuracy of the interpolation scheme. The disadvantage is its high cost and
the likelihood of introducing some spurious irregularity into the data, making differenti-
ated quantities such as curvature behave very badly. Some kind of smoothing procedure is
usually needed to be coupled with this approach. A more elegant way is presented in [26],
where the following Hamilton–Jacobi type equation,{

dτ + S(d0)(|∇d| − 1) = 0

d(x, 0) = d0(x) = φ(x, t),
(29)

is solved to steady state, which is the desired signed distance function. Properly imple-
mented, this method converges quickly in a neighborhood of the front. The reason is quite
simple. On the PDE level,d propagates with speed 1 along the characteristics that are nor-
mal to the interface and converges in timeε to a signed distance function in a neighborhood
of 0(t) of widthε. We note that the complexity of this kind of reinitialization is proportional
to the number of grid points in theε-neighborhood of0(t), which is of orderN when the

A PDE-BASED FAST LOCAL LEVEL SET METHOD 423

FIG. 5. (a) The mid-slice of analytical level set function of a shrinking circle. (b) A spike appears at the
center with a direct implementation. (c) The plot of errors in radius computed with reinitialization (solid line)
and without reinitialization and without enforcing the internal boundary condition (28) (dashed line). Note that at
aboutt = 0.35, a spurious circle appears at the center. In this case, the radius is taken as the average of the two.
(d) The plot of errors in radius computed with reinitialization (solid line) and without reinitialization and with
enforcing the internal boundary condition (28) (dashed line).

area of theε-neighborhood occupies a small fraction of the total area. In [26], the authors
approximatedS(d) by

Sε(d) = d√
d2+ ε2

(30)

with ε = 1x and used a second order ENO scheme [21] to approximate the space deriva-
tives. They reported good results.

Their method generally works well whend0(x) is neither too flat nor too steep near the
interface. Whend becomes too flat, the quantitySε(d) above is small and the propagating
speed will be small. More steps will be needed to resetd to be a signed distance function in
a neighborhood of0(t) of fixed width. See Fig. 6a. Whend is very steep near the interface,
this approach might change the sign ofd, thus moving the interface across grid points. See
Fig. 7a.

Now we analyze how these issues arise and try to find ways to solve them. To keep things
simple and the idea clear, we take the 1D case and use the first order upwind scheme in space

424 PENG ET AL.

FIG. 6. Convergence rate comparison for a flatφ with different approximation toS(φ). The initial level
set in polar coordinates isφ(r, θ)= (r − 0.5+ 0.1r sin(7θ))3. Grid 128× 128, 1t = .51x. RK3-ENO3. Con-
tour taken over [−101x : 21x : 101x]. (a) ApproximateS(φ) by φ/

√
φ2 +1x2. (b) ApproximateS(φ) by

φ/
√

φ2 + (|∇φ|1x)2.

and the forward Euler method in time discretization. Suppose the interface cuts through the
interval [xi , xi+1] anddi < 0< di+1. After one time step, we have

d1
i = di + si 1τ

(
1− di+1− di

1x

)
(31)

d1
i+1 = di+1+ si+11τ

(
1− di+1− di

1x

)
, (32)

where −1≤ si < 0 and 0< si+1≤ 1 are some approximations toS(di) and S(di+1),

A PDE-BASED FAST LOCAL LEVEL SET METHOD 425

FIG. 7. For a steepφ, the interface is moved substantially with the approximation toS(φ) as (30), while
the new one given by (36) alleviates the problem quite a bit. The initial levelφ(x, y)= x2/.32+ y2/.22− 1,
and the grid is 128× 128,1t = .51x. RK3-ENO3 is used. The contour is taken over [−101x : 21x : 101x].
(a) ApproximateS(φ) by φ/

√
φ2 +1x2. (b) ApproximateS(φ) by φ/

√
φ2 + (|∇φ|1x)2.

respectively. The above scheme is monotone, which meansd1
i is nondecreasing indi and

di±1, when the CFL condition1τ ≤1x is satisfied. When(di+1− di)/1x≤ 1, we see that
d1

i < 0< d1
i+1, regardless of the choice of1τ, si andsi+1. But when(di+1− di)/1x > 1,

if we approximatedS(d) by Sε(d) with a uniformε as in [26], there is no guarantee that
d does not change sign. For example, if we take1τ = c1x, di =−m1x, anddi+1= n1x,
we then have

d1
i = m1x

[
−1+ c(m+ n− 1)√

m2+ 1

]
(33)

426 PENG ET AL.

d1
i+1 = n1x

[
1− c(m+ n− 1)√

n2+ 1

]
. (34)

One can easily pickm andn such thatd1
i or d1

i+1 changes sign, no matter how smallc is.
To ensure thatd does not change sign, we have to require

1τ

1x
≤ |dk|

1x|sk|
∣∣1− di+1−di

1x

∣∣ for k = i, i + 1. (35)

In order that the above inequality does not pose a more serious restriction on time step
1τ than the CFL condition does, we choose the approximation toS(d) as

sk = dk√
d2

k +
(
1− | di+1−di

1x |
)2

1x2
.

That is, our approximation to the sign functionS(d) depends on the local slope ofd.
The above analysis suggests that, in the multidimensional case as well, if we use the

forward Euler method in time discretization and approximate∇d(x) with some discrete
operatorDd (see below), we can choose

s= d√
d2+ (1− |Dd|)21x2

to ensure that the interface is confined to one cell in the reinitialization step. The higher
order TVD Runge–Kutta methods given by (19) and (20) are convex combinations of the
first order Euler method. We need only to approximateS(d) with thed in the previous step
and∇d(x) with updatedd in each substep. It is easy to see that the original CFL condition
is still valid with this choice of approximation toS(d).

To put in some smoothing effects, we will use the following approximation in our com-
putation:

s= d√
d2+ |Dd|21x2

. (36)

This choice ofS(d) inherits the above properties. See Figs. 6b and 7b.
The choice of approximation toS(d) by (36) solves the problem of the changing of sign

of φ (thus moving the interface across the cell boundary) in the reinitialization step when
φ is steep and speeds up the convergence whenφ is flat at the interface.

Based on the above analysis, we propose to solve the following Hamilton–Jacobi equation,

{
dτ + S(d)(|∇d| − 1) = 0

d(x, 0) = d0(x) = φ(x, t),
(37)

to steady state, withS(d) approximated by (36).
There are two canonical monotone upwind schemes which have been frequently used. In

[20] a variant of the Engquist–Osher scheme developed for scalar conservation laws was

A PDE-BASED FAST LOCAL LEVEL SET METHOD 427

suggested. In our case it becomes

dn+1
i j = dn

i j −
1τ

1x
s+i j
(√

(a+)2+ (b−)2+ (c+)2+ (d−)2− 1
)

− 1τ

1x
s−i j
(√

(a−)2+ (b+)2+ (c−)2+ (d+)2− 1
)
, (38)

wheresi j is the approximation toS(dn
i j) with (36);a, b, c, d are defined by

a = D−x dn
i j , b = D+x dn

i j

c = D−y dn
i j , d = D+y dn

i j .

Scheme (38) is easily seen to be monotone; i.e., the right side of (3.3) is a nondecreasing
function of all thedn

i j , if

1τ

1x
|si j | ≤ 1

2
. (39)

This is also upwind, which means that away from sonic points (for those with either
S(d)dx1 = 0 or S(d)dx2 = 0) the scheme has a domain of dependence which is in the same
direction as that of the characteristics.

The second and most canonical example is Godunov’s scheme, described abstractly in
[21]; see also [3], whose realization for this problem is

dn+1
i j = dn

i j −
1τ

1x
s+i j
(√

max[(a+)2, (b−)2] +min[(c+)2, (d−)2] − 1
)

− 1τ

1x
s−i j
(√

max[(a−)2, (b+)2] +min[(c−)2, (d+)2] − 1
)
, (40)

which is also monotone and upwind with the same time step restriction and is slightly less
dissipative near sonic points.

If we start each iteration of our main time step with a distance function, the reinitialization
typically takes only one or two iterations within the tube.

For simplicity, we described the above two schemes using forward Euler time discretiza-
tion. In actual computation, we can use a TVD-type Runge–Kutta scheme. See Eqs. (19)
and (20) in Section 2. The one-sided differencesD±x di j , D±x di j are computed with ENO
[21] or WENO [13] schemes for Hamilton–Jacobi equations.

A very important practical question is when to start our reinitialization step. Shall we
do it every time step? There is no simple answer that applies generally. Reinitialization
every time step is necessary when the interface undergoes a rapid change andφ deviates
dramatically away from the signed distance function. Otherwise this is excessive. What we
need is some way of monitoring this process to trigger the reinitialization automatically. In
our computation, we choose to monitor two factors: whether the average slope ofφ deviates
from 1 substantially and whether the interface moves near the boundary of the tubeβ (if
three tubes are used). (This is another reason to have a middle tube.) If one of these two
signals is activated, we start the reinitialization procedure immediately. However, this is not
very reliable. If the reinitialization is not triggered by the above monitoring procedure after
a fixed number of time steps, it still needs to be executed. Since the monitoring procedure is

428 PENG ET AL.

FIG. 8. Data on the left are computed with global method, while those on the right are computed with local
method. Grid 128× 128, RK3-ENO3. (a) Percentage of area loss. (b) Percentage of arclength loss. (c) Deviation
from 1 of defect ratio.

only done within a narrow tube with central differencing, the cost of doing this is minimal.
We have found this approach works well in our computation. See Section 5 for some
numerical examples.

To summarize, our reinitialization step consists of several steps of the PDE solver for
(29), with the sign function approximated as discussed above.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 429

5. NUMERICAL RESULTS

In this section, we present some numerical examples that use one or more of the techniques
presented in the previous sections and compare the results and performances with that
obtained by global level set method. All the computations below are performed on a Sun
Sparc-10 workstation.

FIG. 9. Volume conserved mean curvature flow. Grid 128× 128, RK3-WENO5. (a) Initial front. (b) After
200 steps. (c) After 400 steps. (d) After 1600 steps. (e) Area. (f) Arclength.

430 PENG ET AL.

TABLE 1

Comparison of Global and Local Level Set Methods for Example 1

Mesh size Global O(N2) Local O(N) Global/Local

32× 32 0.03269 0.01986 1.646
64× 64 0.1416 4.332 0.04221 2.1225 4.6451

128× 128 0.9366 6.614 0.09511 2.253 7.3221
256× 256 4.35 4.64 0.2246 2.363 9.2933

EXAMPLE 1. We compare the performances between our local level set method and
global level set method on the following problem. We rotate a circle around the origin twice.
The circle is initially centered at(0.5, 0), with radius 0.25. The computation is performed
on the domainD= [−1, 1]× [−1, 1], with RK3-ENO3. A reinitialization is performed for
three steps in every main time step, also using RK3-ENO3. In the level set formulation,
this is equivalent to solve the following equation:

φt − yφx + xφy = 0. (41)

Table 1 tabulates the CPU time (in seconds) used in each step for the global method and
the local method described in Section 2 and their ratios. This table clearly shows theO(N)

behavior of our local level set method.
The quality of the numerical solutions is measured by three factors, namely, the loss of area

A, the loss of arclengthL (in percentages), and the isoperimetric defect ratioR= L2/(4π A).
The defect ratioR measures how far the shapes deviated from a circle. For a circle,R= 1,
and R> 1 for any other shape. Because of numerical errors in the algorithms we used to
compute the area and arclength, the defect ratios computed are all smaller than 1, but are
pretty close to 1. See Table 2. In Fig. 8, we plot the loss of area and arclength (in percentage)
and the deviation of defect ratio from 1 in the results computed by local and global method
for a grid of size 128× 128.

EXAMPLE 2. We test our local level set algorithm on volume-preserving mean curvature
flow,

φt = (κ − κ̄)|∇φ|, (42)

TABLE 2

Area, Arclength Loss, and Defect Ratio for Global Algorithm and Local (Fast)

Algorithm in Example 1

Global Local

Mesh size Area loss Length loss Defect ratio Area loss Length loss Defect ratio

32× 32 57.3 37.4 0.9174 57.3 37.4 0.9174
64× 64 13.6 7.45 0.9908 13.5 7.42 0.9910

128× 128 4.88 2.64 0.9964 4.87 2.64 0.9964
256× 256 0.48 0.36 0.9977 1.17 0.69 0.9980

A PDE-BASED FAST LOCAL LEVEL SET METHOD 431

whereκ is the mean curvature and ¯κ is the average mean curvature on the front which can
be computed by

κ̄ =
∫

κδ(φ)|∇φ| dx∫
δ(φ)|∇φ| dx

. (43)

To test the performance of our local level set method, two different initial conditions
are used in our test. In the first case, the initial front is a spiral as we have used in our
extension example in Section 2. In Fig. 9, we plot the fronts at different steps and the area
(which should stay constant) and arclength against the computational steps. In the second
case, the initial fronts are 100 bubbles spread over [−1, 1]× [−1, 1], with centers and radii
produced by a random number generator. We computed the total area, the total arclength,
and the approximate number of bubbles by

N = 1

2π

∫
κδ(φ)|∇φ| dx. (44)

The results are shown in Fig. 10. With a 128× 128 grids, we lose about 4% of the area
after 1600 steps. The same computations are also performed with global level set method.
No distinguishable differences are noticed between the results of the global and our local
methods.

For complexity analysis, we applied our local level set method to this problem with
various initial shapes in 2D, namely a circle, an ellipse, a square, a star (see Example 4
below) and the spiral mentioned above. We also simulated the 3D problem of a dumbbell
collapsing under its mean curvature for which pinch-off occurs. Table 3 tabulates the CPU
time (in seconds) per time step for a different number of grid points and different initial
shapes, which clearly demonstrated theO(N) complexity of our local method in 2D and
O(N2) complexity in 3D.

EXAMPLE 3. In this example, we test our extension and reinitialization algorithms dis-
cussed in Sections 3 and 4 on the vortex sheet problem. Details of this problem in the level
set formulation are contained in [11]. We briefly summarize it here.

The 2D incompressible Euler equation in vorticity-streamline formulation is

ωt + uωx + vωy = 0, (45)

curl(u, v) = ω, (46)

div(u, v) = 0, (47)

whereω is vorticity andu andv are the two components of the fluid velocity.

TABLE 3

Complexity Analysis of the Local Level Set Method for Example 2

Mesh Circle Ellipse Square Star Spiral Dumbbell

32 1.7e-2 2.4e-2 3.6e-2 4.3e-2 5.8e-2 0.4
64 4.0e-2 2.3 4.9e-2 2.1 7.9e-2 2.2 1.2e-1 2.7 1.5e-1 2.5 2.4 5.9

128 8.3e-2 2.1 1.1e-1 2.3 1.8e-1 2.3 2.8e-1 2.4 4.4e-1 2.9 10.7 4.5
256 2.3e-1 2.8 3.1e-1 2.7 4.8e-1 2.7 7.9e-1 2.8 1.1 2.6

432 PENG ET AL.

FIG. 10. Volume conserved mean curvature flow. Grid 128× 128, RK3-WENO5. (a) Initial fronts. (b) After
200 steps. (c) After 1600 steps. (d) Area. The exact area is 0.4613. (e) Arclength. The initial arclength is 23.598.
(f) Number of bubbles. The initial number of bubbles is 100.

Supposeω is only concentrated on a thin curve called a vortex sheet, and let

ω = δ(φ)η (48)

whereφ is the level set function associated with the vortex sheet andη is a parameter that
is related to the strength of vorticity.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 433

Inserting Eq. (48) into (45), and equating the coefficients ofδ(φ) andδ′(φ) terms, we get

φt + uφx + vφy = 0, (49)

ηt + uηx + vηy = 0. (50)

Introduce the streamline functionψ , such that

u = ψy, v = −ψx. (51)

From Eq. (46) we get the following equation forψ :

ψxx + ψyy = −δ(φ)η. (52)

Note thatη itself does not make physical sense, sinceδ(φ) is not invariant in the sense
thatφ can be replaced byh(φ) for a functionh that satisfiesh′> 0 andh(0)= 0 without
changing its value. Butδ(φ)|∇φ| is invariant. Henceη/|∇φ| is the strength of the vorticity.
This gives us the following transformation ofη if φ is changed tõφ that corresponds to the
same interface:

η̃ = |∇φ̃|
|∇φ|η. (53)

This relation is used in the reinitialization ofφ. Another issue that concernsη is thatη
only makes sense on the vortex sheet, i.e., the zero level set ofφ. But to updateη, we need
its value in a neighborhood of the interface. This problem can be solved by the extension
procedure we described in Section 3.

Our computation is performed on a rectangularD= [−1, 1]× [−1, 1]. The boundary
conditions forψ , φ, andη are:

1. ψ is periodic inx, andψ(x, 1)=ψ(x,−1)= 0.
2. φ is periodic inx, andφ(x,+1, t) = φ(x,−1, t)+ 2.
3. η is periodic in bothx andy.

The initial conditions forφ andη are

φ(x, y, 0) = y+ 0.05 sin(πx),

η(x, y, 0) = 1.

The choice for the approximation to delta function is

δ(φ) =
{

1
2ε

(1+ cos
(

πφ

ε

)
if φ < ε

0 otherwise,
(54)

whereε is a small parameter that is proportional to mesh size1x. In our computation, we
use a 128× 128 grid, withε= 121x as in [11] and RK3-WENO5 in main time step and
reinitialization. The Laplace equation (52) is solved by the FISHPACK routinehwscrt.f.
Since the cost of updatingφ andη is only a small fraction of the cost of solving the Laplace
equation, a global level set method is used here. See Figs. 11 and 12 for the remarkable
results. In particular, we obtain numerous turns without spurious wiggles. With only the

434 PENG ET AL.

FIG. 11. Vortex sheet problem.1t = 0.11x. (a) Without reinitialization and extension. (b) With reinitializa-
tion and extension every 10 time steps.

reinitialization but without the extension step, the computation blows up quickly. The reason
for this is that in the rescaling ofη using (53),η is not well defined at the grid points where
the gradient ofφ vanishes. The data near the front is polluted by the data over these grid
points, especially when the front rolls up, making further computation hard to proceed. An
extension step will assign meaningful values to these grid points.

The next two examples showed a comparable savings of one order of magnitude in local
and global level set calculations.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 435

FIG. 12. Vortex sheet problem. The vorticity at timet = 4.5.

EXAMPLE 4. We test our local level set algorithm on the motion with curvature depen-
dent acceleration. The general equation governing the motion is

µ
du

dt
= −[p]n− σκn+ f − µu

(
1

|d A|
d|d A|

dt
+ 1

µ

dµ

dt

)
,

where

1

|d A|d
|d A|
dt
= ∇ · u− n · Du · n

and

[p] =
∫

Ä

(
(∇ · u)(u · n)− (u · ∇u) · n− 1

µ
(σκ − f · n− F · n)

)
δ(φ)|∇φ| dÄ∫

Ä
1
µ
δ(φ)|∇φ| dÄ

,

where

F = −µu

(
1

|d A|
d(|d A|)

dt
+ 1

µ

µ

dt

)
and f can be determined depending on the property of the motion. For the details, see [14].
See Fig. 13 for the numerical results.

EXAMPLE 5. In this example, we apply the local level set method to the 3D double bub-
ble minimizer calculation. Initially, a dumbbell-shaped bubble is surrounded by a doughnut-
shaped bubble, and the bubbles are in the air. The total surface energy is the integration
of the surface tension along the bubble surface. Surface tension can be prescribed to be
different at interfaces between bubble and bubble and bubble and air. We are interested in
finding the shape which minimizes the total surface energy while keeping the volume of

436 PENG ET AL.

FIG. 13. Oscillating starfish, curvature dependent acceleration (volume preserving). Initial shape is given in
polar coordinates byr = 0.5+ 0.3 sin 5θ .

FIG. 14. Middle slice of the 3D double bubble minimizer problem. The surface tension of the dumbbell is
smaller than that of the doughnut.

A PDE-BASED FAST LOCAL LEVEL SET METHOD 437

each bubble fixed. Three level sets are used, namely,φ0 for the air,φ1 for the dumbbell, and
φ2 for the doughnut. We try to minimize

E =
2∑

i=0

∫
γi δ(φi (x))|∇φi (x)| dx (55)

subject to nonoverlap and volume conservation constraints. Here theγi ’s are surface tension.
Details can be found in [28].

In our calculation, the surface tension of the doughnut-shaped bubble is taken to be bigger
than that of dumbbell-shaped bubble. Figure 14 is the contour plot of the dumbbell-shaped
bubble taken on a cross section. Note that we did not cut the level set function to be constant
outside the tube around the interface. We see that the dumbbell-shaped bubble is clipped
in two. We also see that only in a neighborhood of the interface the level set function is
very close to a distance function. Contours that are far away from the interface are not even
touched.

REFERENCES

1. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,J. Comput. Phys.118,
269 (1995).

2. D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods,
J. Comput. Phys.148, 2 (1999).

3. M. Bardi and S. Osher, The nonconvex multi-dimensional Riemann problem for Hamilton–Jacobi equations,
J. Numer. Anal.22, 344 (1991).

4. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean
curvature flow equations,J. Diff. Geom.33, 749 (1991).

5. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturing
methods for incompressible fluid flows,J. Comput. Phys.124, 449 (1996).

6. D. L. Chopp and J. A. Sethian, Flow under curvature: Singularity formulation, minimal surfaces, and geo-
desics,J. Exper. Math.2, 235 (1993).

7. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems,
J. Comput. Phys.135, 8 (1995).

8. L. C. Evans and J. Spruck, Motion of level set via mean curvature I,J. Diff. Geom.33, 635 (1991).

9. T. Hou, Z. Li, S. Osher, and H. K. Zhao, A hybrid method for moving interface problems with applications to
the Hele-Shaw flows,J. Comput. Phys.134, 1997.

10. E. Harabetian and S. Osher, Regularization of ill-posed problems via the level set approach,SIAP58, 1689
(1998). [UCLA CAM Report 95-41.]

11. E. Harabetian, S. Osher, and C. W. Shu, An Eulerian approach for vortex motion using a level set regulariza-
tion procedure,J. Comput. Phys.127, 15 (1996).

12. J. Helmsen, E. G. Puckett, P. Colella, and M. Dorr, Two new methods for simulating photolithography
development in 3D, inSPIE Microlithography IX, 1996, p. 253.

13. G. S. Jiang and D. Peng,WENO Schemes for Hamilton-Jacobi Equations, UCLA CAM report 97-29, 1997.
To appear inSIAM J. Sci. Comput.

14. M. Kang, B. Merriman, S. Osher, and P. Smereka,A Level Set Approach for the Motion of Soap Bubbles with
Curvature Dependent Velocity or Acceleration, UCLA CAM report 96-19.

15. B. Merriman, J. Bence, and S. Osher, Motion of multiple junctions: A level set approach,J. Comput. Phys.
112, 334 (1994).

16. B. Merriman, R. Caflisch, and S. Osher, Level set methods with application to island dynamics, inProceed-
ings of Meeting on Free Boundary Problems: Theory and Application, Crete, 1997, edited by I. Athasopoulos,
G. Markrikis, and J. F. Rodrigues (CRC Press, Boca Raton, FL, 1999). [UCLA CAM Report 98-10.]

438 PENG ET AL.

17. W. Mulder, S. Osher, and J. A. Sethian, Computing interface motion in compressible gas dynamics,J. Comput.
Phys.100, 209 (1992).

18. S. Osher, Subscale capturing in numerical analysis, inProceeding of the International Congress of Mathe-
maticians, Zurich, 1994(Birkhauser, Basel), p. 1449.

19. S. Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations,
SIAM J. Numer. Anal.24, 1145 (1993).

20. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on
Hamilton-Jacobi formulation,J. Comput. Phys.79, 12 (1988).

21. S. Osher and C. W. Shu, High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations,
J. Numer. Anal.28, 907 (1991).

22. J. A. Sethian,Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and
Material Science(Cambridge Univ. Press, Cambridge, UK, 1996).

23. J. A. Sethian, A fast marching level set method for monotonically advancing fronts,Proc. Nat. Acad. Sci.93,
1591 (1996).

24. C-W. Shu, Total-variation-diminishing time discretization,SIAM J. Sci. Stat. Comput.9, 1073 (1988).

25. C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing schemes,
J. Comput. Phys.77, 439 (1988).

26. M. Sussman, P. Smereka, and S. Osher, A level set method for computing solutions to incompressible two-
phase flow,J. Comput. Phys.119, 146 (1994).

27. H. K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multi-phase motion,
J. Comput. Phys.122, 179 (1996).

28. H. K. Zhao, B. Merriman, S. Osher, and L. Wang, Capturing the behavior of bubbles and drops using the
variational level set approach,J. Comput. Phys.143, 495 (1998).

	1. INTRODUCTION
	FIG. 1.

	2. THE LEVEL SET FORMULATION AND ITS LOCALIZATION
	FIG. 2.
	FIG. 3.

	3. EXTENDING A QUANTITY OFF AN INTERFACE
	FIG. 4.

	4. REINITIALIZATION
	FIG. 5.
	FIG. 6.
	FIG. 7.

	5. NUMERICAL RESULTS
	FIG. 8.
	FIG. 9.
	TABLE 1
	TABLE 2
	TABLE 3
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	REFERENCES

