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We develop a fast method to localize the level set method of Osher and Sethian
(1988,J. Comput. Phys79, 12) and address two important issues that are intrinsic to
the level set method: (a) how to extend a quantity that is given only on the interface
to a neighborhood of the interface; (b) how to reset the level set function to be
a signed distance function to the interface efficiently without appreciably moving
the interface. This fast local level set method reduces the computational effort by
one order of magnitude, works in as much generality as the original one, and is
conceptually simple and easy to implement. Our approach differs from previous
related works in that we extract all the information needed from the level set function
(or functions in multiphase flow) and do not need to find explicitly the location of
the interface in the space domain. The complexity of our method to do tasks such
as extension and distance reinitializatiorOgN), whereN is the number of points
in space, noD(N logN) as in works by Sethian (199€roc. Nat. Acad. SciB3,

1591) and Helmsen and co-workers (1988)E Microlithography IXp. 253). This
complexity estimation is also valid for quite general geometrically based front motion
for our localized method. © 1999 Academic Press

1. INTRODUCTION

Since its inception in [20], the level set method has been used to capture rather t
track interfaces. The advantages of this capturing approach are well known by now.
method is stable, the equations are not unnecessarily stiff, geometric quantities suc
curvature become easy to compute, and three-dimensional problems present no difficu
See [22, 18, 16] for a survey and references. Recent improvements include the comput:
of multiphase flows in [27, 28] and unstable fronts in [10, 11].

As pointed out in [1], “one drawback of the technique stems from the expense;
embedding the interface as the level set of a higher dimensional function, a one dimensi
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interface problem has been transformed into a two dimensional problem. In three sg
dimensions, considerable computational lag@rn®)) is required per time step.”

We remark that there are physical problems, e.g., multiphase incompressible fluid
namics [26, 5], compressible fluid dynamics [17], and melting ice problems [7], in which t
additional level set equation adds only a fraction of extra computing time. This is beca
the underlying field equations must also be solved throughout all space.

Inthis paper we localize the level set method. Our localization works in as much genere
as does the original method and all of its recent variants [27, 28], but requires an orde
magnitude less computing effort.

Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our appro:
differs from theirs in that we use only the values of the level set function (or functions, f
multiphase flow) and not the explicit location of points in the domain. Our implementati
is easy and straightforward and has been used in [9, 14, 27, 28].

Our approach is partial differential equation (PDE) based, in the sense that our lo
ization, extension, and reinitialization are all based on solving different PDEs. This lez
to a simple, accurate, and flexible method. Equations (10) and (11) of Section 2 enabl
to update the level set function (or functions in the multiphase case) without any stabi
problems at the boundary of the tube used to localize the evolution. Such equations are
and do not appear in [1]. In fact, the technique used in [1] has boundary stability proble
because Eq. (2) or (3) (the evolution equation of the level set function) is solved right ug
this boundary. In contrast, in our method, the speed of evolution degenerates smoothly
at this boundary. This is achieved by modifying the evolution of the level set function ne
the tube boundary but away from the interface. This modification effectively eliminates
boundary stability issues in [1] and has no impact on the correct evolution of the interfa
The reinitialization step will reset the level set function to be a signed distance functior
the front. There are no boundary issues in our distance reinitialization or extension of
locity field off the interface. Both of these tasks involve simple hyperbolic equations whe
characteristics flow out of the tube boundary; thus, upwind schemes remove all bounc
difficulties. We make use of the state-of-the-art high order ENO [20, 21] and WENO [1
schemes to do updates, whenever it is appropriate to do so.

The local level set algorithm presented here is almost as easy to program as the gl
level set method, in-any number of dimensions. Our technique as described in Secti
requires no complicated data structures to store the information about the tubes aroun
interface other than the ordinary array; thus, we eliminate the complexity and overhea
updating such data structures.

Another very interesting fast method was recently devised in [23] and [12] in the spec
case when the normal velocity of the front is a given nonnegative function of position. T
key observation there is that the problem can be reduced to first arrival time (see also |
and that this time-independent equation can be solved by space marching using a first ¢
accurate upwind scheme, as is commonly done, e.g., in the computation of steady super
flows. The complexity of the method developed in [23] and [12] is form&I§N log N),
whereN is the number of grid points in space. The complexity of our methad(il),
which is optimal in the sense that it is proportional to the number of points near the frol

Our method works easily in the presence of topological changes, for general sp
functions and for a wide class of numerical discretizations, as we demonstrate in Secti
below. Unlike the method in [12, 23], which is necessarily first order accurate, our mett
is of an arbitrarily high order of accuracy.
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This paper also addresses two important issues in level set computation: extension
reinitialization.

To move the interface, we need the normal velogjtyn a neighborhood of the interface.
In some applications, such as in mean curvature fligig naturally given globally or at least
near the front. However, in some other applications, the normal velogity only known
at the interface. The Stefan problem and Hele—Shaw flow problems fall into this categ
[7, 9]. We propose in this paper a PDE-based method to extend a quantity that is defi
on the interface to a neighborhood of it along the direction normal to the interface. C
approach is conceptually straightforward and easy to implement. It has been success
used in [7, 9] and elsewhere.

The extension step was first introduced and analyzed in [27]. In a recent interesting p:
[2], Adalsteinsson and Sethian obtained a fast global velocity extension method. Tt
method is closely tied to the fast marching method of [23, 12]. Our extension method |
lower formal order of complexity®(N) instead ofO(N log N)), although it remains to be
seen which is faster for real local level set calculations. We shall use our method to ob
a very successful level set based computation of an unstable vortex sheet (see Fig.
below), considerably improving the results in [11].

In most cases, it is impossible to maintain the level set function as a signed dista
function to the moving interface in the advection step. Flat and/or steep regions deve
as the interface moves, rendering the computation and contour plotting at those pl:
inaccurate. For numerical reasons, we need to resurrect the level set function to be c
to a distance function from time to time. This is the so called distance reinitialization
the level set function. This process can be quite complicated, expensive, and have
tle by-products. A straightforward reinitialization by finding the location of the front an
computing the signed distance to it is very expensive and also may bring some unplea
side effects, such as oscillations in curvature, which is the Laplacian of distance funci
[15]. This is highly undesirable in situations where such geometric quantities play a crut
role. In [26], the reinitialization is achieved by solving a time-dependent Hamilton—Jacc
type equation to its steady state. This is the desired signed distance function. This
proach works well when the level set function is initially not far away from a distanc
function, but may become too slow when the level set function is flat near the interfa
or even worse, it may move the interface across grid points when the interface beco
steep. We propose here a variant to the original Hamilton—Jacobi equation in [26] ar
new approximation to the sign function in the equation to ensure that the interface d
not move across the grid points, if it moves at all. Our numerical computations ver
this.

The format of our paper is as follows. In Section 2, we review the standard level .
formulation and present our localization algorithm. In Section 3, we derive the PDE use
extend a quantity on an interface away from the interface. We also discuss the approp
numerical implementation. In Section 4 we discuss the level set reinitialization in sol
detail. Numerical examples that are used to demonstrate specific declarations appear ne
related text, while the more involved examples that use several of the techniques prese
in this paper are presented in Section 5. These new examples include the vortex s
calculation already mentioned, a double bubble minimizer using three level set functic
the merging of 100 bubbles under mean curvature flow, and the motion of bubbles ur
curvature dependent acceleration.
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2. THE LEVEL SET FORMULATION AND ITS LOCALIZATION

We begin by reviewing the standard level set method, as first developed in [20], and
the conventions that will be followed through out the paper.

Consider a closed moving interfa¢&t) in R" with codimension 1. Lef2(t) be the
region (possibly multiconnected) thBtt) encloses. We associate wiih(t) an auxiliary
function¢ (x, t), called the level set function, which is Lipschitz continuous and satisfie
the following conditions

o(X, 1) <0 inQ(t)
¢(X,t) =0 onI'(t) (2)
(X, t) > 0 in R\Q(t),

wherex € R", t € R™. Note that our choice of the sign ¢fx, t) is opposite to the popular
sign convention. We have found this choice more convenient. See Fig. 1.

Conversely, if we knowp, we may locate the interface by finding the zero level sgt.of
Thatis,I'(t) = {X: ¢ (X, t) = 0}. So moving the interface is equivalent to updatingvhich
can be done by solving a Hamilton—Jacobi type equation. The equation can be der
simply as follows.

Suppose(t) is a particle trajectory on the interfafét) moving with velocityt = x(t).

By definitiong (x(t), t) = 0. Differentiating with respect tb we get

¢ +U0-Vop=0. (2)
By projecting the velocityi onto the direction normal to the interface, Eq. (2) becomes
ét + Un|Ve| = 0. 3

Typically, the interfacd’(t) has a prescribed velociiy or normal velocityu,, which
might be a function of space variabke time t, the normal directior, the local mean
curvaturex, or some global quantities like the Hausdorff meagquvg)| of the interface
or the Lesbegue measuj@ (t)| of (t), or some external physics to which the motion of

FIG. 1. (a) Zero contour op representing the frort. (b) Surface of-¢.
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I'(t) is coupled. One of the nice features of level set formulation is that these geome
guantities have simple representations in termg, of

A= @

- .% (5)
Tl = /5(¢)|V¢| dx (6)
[2()] = /H(—¢) dx, (7)

wheres (¢) is the 1Ds-function, H (¢) is the 1D heaviside function which takes 0 fox 0
and 1 otherwise, and is chosen such that a sphere has positive mean curvature equa
the reciprocal of its radius. In 2D (t)| is simply the arclength df (t) and|2(t)| the area
of Q(t), while in 3D, |I"(t)| is the surface area @f(t) and|2(t)| the volume of2(t).

The level set method is just to extend Eq. (3), or more generally (2), to be valid through
the space and pick up the zero level set as the front at all later time.

We point out here two issues of practical importance.

First, extendingu, off the interface is not always routine. Localization helps confine
the definition ofu, to a small neighborhood df (t) = {x: ¢ (x, t) =0}. In Section 3, we
describe a fast method to extemglcontinuously off the front.

Second, for numerical accuracy, the level set function must stay well behaved in the s¢
that, except for isolated points,

O<c=<|Vg|=C

for some constants andC. In fact, it is desirable for many problems thagx, t) be a
signed distance function, i.e.,

Vol =1

Yet the solution of Eq. (2) or (3) often becomes very flat and/or steep at thelfiont
So a procedure is needed to resurieet, t) so that it behaves well in a neighborhood of
the front. Such a procedure is commonly called reinitialization. Again localization make:
only necessary to perform reinitialization within a narrow region around the front. We w
address this issue in Section 4.

Now we introduce an algorithm to localize the level set method. For simplicity of pr
sentation, we describe the algorithm in 2D. The idea can be extended to 3D without
change.

Let 0< B < y be two constants which are comparableAt® whose values will be de-
termined below. For a given open regiéhin R" with boundaryI'®, we define a level
set functiong®(x) satisfying (1). If necessary, apply the reinitialization step described |
Section 4 to sep®(x) to bed®(x), the signed distance function to the frart. AroundI™®
we define a tube with width by

T = {x:16°0)] <y} (8)
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Actually we only need°(x) to coincide withd®(x) in T°.
Next, letc be a cut-off function:

1 if ¢l < B
c(@) =<3 (ol —)?Q@ol+y —3B8)/(y —B)°* fB<lpl<y 9)
0 if || > y.

We updatd™® by solving the following equation,
¢t +c(p)u- Ve =0 (10)
or

P14 C(P)un| V| =0, (11)

on TO with initial datag®(x) for one time step and get'(x). Refer to Fig. 2. The time
step is chosen such that the front moves less than one grid point. This is equivalent tc
CFL condition which requireat|un| < Ax uniformly on the front. If the velocityi or uy
is only given onl'%, an extension step is needed to ext@nor u, to T°. The reason we
introduced the cut-off function in (10) and (11) is to prevent numerical oscillations at t
tube boundary.

The new location of the front is given Hy: = {x : ¢1(x) = 0}. Letd(x) be the signed
distance function t&'1. Of coursed(x) is not known to us. All we have ig*(x).

To move the front further, we need the shifted tube

TH={x:d' 0] < 7}, (12)
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FIG. 2. Computation is only performed on the marked region ardoind
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SO we must construct a new level set functigrix) from </31(x) such that
¢'(x) =d(x) for [d*(0] < . (13)

This can be achieved via a step described below. First we discuss the necessity and
difficulties involved in doing this.

In the updating step above, we solve the correct equation only in a tube of gadius
the region{x: g < |¢°(x)| < v}, the motion is modified by the cut-off function. Outside
the tubeT?, we do not updateé’ at all. A steep gradient develops at the region near th
boundary of the tub&? in the direction of motion of the interface. Obvioush}(x) is not
a signed distance function 1. See Fig. 3b. To resét! to be a signed distance function
in a neighborhood of'? of width y, the reinitialization must be performed on a region tha
containsT . Since the front moves less than one grid point, we can choose this regior
be

NO = {x : |¢°(x + y)| < y, for certain|y| < Ax}. (14)

Next we perform the reinitialization step dw°, starting with¢*(x), and obtaind(x),
the signed distance function 1. Our new level set function is defined by

—y if d*(x) < —y

() = ¢ dx) if [d*x)| <y (15)
y if d(x) > y.
a ° b °

FIG.3. The currentresultis plotted with a solid line, while the previous result(s) is shown with a dashed lir
(a) The initial local level set profile. (b) After moving one step. Note the steep gradient developing at the ri
tube boundary. (c) After reinitialization. (d) The final local level set profile after cut-off.
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Then we defind! andN? as follows:
Th = (x: [d'X)] < v} (16)
N! = {x: |pt(x +y)| < y, for some]y| < Ax}. (17)

HereT?! is the region where the computation in the next time step will be performed, a
N1 is the region on which the reinitialization will be performed after the next time step.

We are now ready to movE! one more step. Iterating the above-described steps w
move the front further. This process is depicted in Fig. 3.

The actual numerical values gfandy depend on the width of the stencil of the scheme:
used to approximate the spatial derivatives. In our computation, we clfce2AX, y =
4Ax forasecondorder ENO scheme [21] or athird order WENO scheme [13}, arBIA X,

y = 6AX for a third order ENO scheme [21] or a fifth order WENO scheme [13].

We remark here that our extension and reinitialization are done by solving a hyperb
equation with characteristics flowing out of the tube. No boundary conditions are neec
This is enforced numerically by using an upwind scheme. See Sections 3 and 4 for det

Having described the local level set method in a semidiscrete way, we now outline
algorithm in the fully discrete form.

MAIN ALGORITHM.

Step 0. Initialize. Given the interfac&’, construct an associated level set function
¢. If necessary, apply the reinitialization step described in section 4 globally tblset
signed distance function 0.

Step 1. Compute velocity. Calculaig, or i from ¢ or the physical problem coupled
with ¢ on or near the zero level set ¢f

Step 2. Extend (if necessary). Extend, or U to tubeT ={(x;, yj) : |¢j| <y} by
the method described in Section 3.

Step 3. Advance. Update in tubeT for one time step to gep by an ODE time
stepping method. See remark 2 below.

Step 4. Reinitialize. Apply the reinitialization step i on the tubeN = {(x;, Yi):
mMiN_i<, u<1lPi+vj+,| < v}. Define the newp by (15). Go back to step 1.

We make several remarks here.

Remark 1. The most straightforward way to implement the above algorithm is to sto
the values of the level set function(s) and other related quantities at the grid points in
arrays. Inthe updating step, we search through each grid point and test if it falls into the tu
by checking the value of level set function at that point. If it does, then do the computati
otherwise, nothing is done. While easy to code, the drawback of this implementatior
that we have to go through all the grid points and do a comparison there. This is
really necessary since computation is performed only at the grid points within the tu
T in the main time step and within tub¥ in the reinitialization step, and such points
usually constitute only a small fraction of the total grid points. As the number of gr
points or dimension increase, this overhead takes up a considerable amount of CPU f
To overcome this drawback, we introduce an extra 2D array mask of the same gize
that can be used to differentiate the grid points in and out of the tubes and two equal-s
1D arraysndexl andindexX? that store the index of the grid points in the tib@nd whose
size is on the order dD(N). These arrays are initialized by a procedure like the followinc



418 PENG ET AL.

k=1;
for i = 1 to Nx,
for j =1 to Ny
mask(i,j) = 0;
if |phi(i,j)| < gamma
mask(i,j) = 2; index1(k) = i; index2(k) = j; k=k+1;
else if |phi(p,q)| < gamma and mask(p,q) == 0 for p=i-1,i+1,
q=j-1,j+1
mask(p,q) = 1; index1(k) = p; index2(k) = q; k=k+1;

Thus, tubeT corresponds to grid points where mésk) =2 and tubeN corresponds to
maski, j) =1 or 2. This tube construction step ned€&N?) operations and is performed
just once per main time step. For all the other steps, we only Q&) operations since
the computation is done in a 1D loop. For example, to compueg the grid points within
the tubeT, we can use the following pseudo-code

for k =1 to K
if (mask(index1(k),index2(k)) == 2)
phi_x(index1(k),index2(k)) = (phi(index1(k)+1,index2(k))
- phi(index1(k)-1, index2(k))/
(2*dx) ;

where K is the number of grid points within the tubl¢ found in the construction step
above. After the level set function is updated in the tlibeve reinitialize¢ over the tube
N in step 4 by a procedure like

for k=1 to K
phi_new(index1(k),index2(k)) = phi(index1(k),index2(k) + ...

We then construct the new, shifted tubes by going back to our tube construction step ab
Analogous statements are also true in 3D. This gives us an algorithm of approxima
O(N) complexity in 2D andD(N?) complexity in 3D, as will be shown in Section 5.
Atruly O(N) implementation of the main algorithm is possible by replacing the simpl
tube construction step above with a procedure that require@(N) operations. We have
done this in all the numerical experiments in Section 5 with very little change in our resu
We recommend the implementation presented here because of its programming simpli

Remark 2. The solutions to Eq. (2) or (3) are often only uniformly continuous witt
discontinuous derivatives, no matter how smooth the initial data are [20, 21]. Simple cen
differencing is not appropriate here to approximate the space derivatives. Instead, we
ENO type schemes for Hamilton—Jacobi equations as developed in [20, 21] or WEI
schemes developed in [13].

Remark 3. The time stepping methods we used are the TVD Runge—Kutta schen
devised in [24]. Consider the system of ODEs,

{%=Lw>

18
¢(0) = ¢o. 4o
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whereL is some spatial operator. The second order method attkhstep is
¢ = ¢" + ALL(9") (19)

¢t =" + FIL(M + L@"D)].

The third order method at threth step is

Pt =¢" + AtL(9")
P = " + AL (PN + L($MY)] (20)
¢n+l ="+ % [L(¢n) +4L <$n+%) + L(q;n"'l)},

Remark 4. If the front moves very little in one time step, there is no need to reinitializ
every step. We can iterate using only Step 1, 2 and 3 until reinitialization is triggered. Tt
we go to Step 4. We shall discuss this further in Section 4.

Remark 5. If the motion of the interface involves sensitive quantities such as derivativ
of curvature, we need to choose biggeandy and compute these quantities in an ever
narrower tube of widtly, where O< @ < B8 < y. Inthis case, we choose=2AX, 8 =4AX,

y =6AX for a 2nd order ENO scheme [21] or a 3rd order WENO scheme [13]pand
3AX, B = 6AX, y = 9AX for a 3rd order ENO scheme [21] or a 5th order WENO schem
[13]. Introducing an extra tube also enable us to monitor the behavior of the level set func
and the movement of the front and trigger the reinitialization only when necessary. We \
discuss this further in Section 4.

3. EXTENDING A QUANTITY OFF AN INTERFACE

Inthe level set formulation, we need the velodityr normal velocityu,, in a neighborhood
of the interfacd™(t). In some applicationsj or u,, is naturally defined globally or at least
near the front. Such examples include motion with a constant speed and mean curv:
flow [20]. But in some other applications or uy is only given on the interface. Away from
the interface, it is not defined at all. The Stefan problem [7] and Hele—Shaw flows [9] :
such examples. There are also situations where we need to extend other quantities de
on the interface to a neighborhood of the interface. In [7], a PDE-based method was t
to do this, and this is the approach that we adopt here. This method is straightforward
easy to implement. We note that the same method was originally proposed and analyz
the appendix of [27], but the authors did not pursue it there.

Suppose we have a quantifydefined on the interfacE(t). The most natural way to
extendq off I'(t) is to letq be a constant along the curve normal'@). This suggests the
following hyperbolic PDE,

V¢
—— .VQq =0, 21
qt+S(¢)|w)| q (21)
whereS(¢) is the signature function @f defined as
-1 if¢p <O
S¢p)=40 if¢g=0 (22)

11 if¢ > 0.
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The characteristics of Eq. (21) are exactly those that are normal to the level#einof
pointing away fromi" (t).
Equation (21) is a particular case of the following general Hamilton—Jacobi equation

¢+ H(Vg,x,t) =0, xeR"t>0. (23)
q q

Accurate and robust numerical schemes exist to compute approximate solution:
Eq. (23). See, for example, [21, 20, 13]. Yet usually in the extension step, numerical ac
racy of the method used is not an issue, as long as the method extends the quantity
consideration in a sensible way. In the following, we shall use a first order upwind sche
coupled with a forward Euler time discretization. For simplicity of presentation, we wi
only write down the formula for the 2D case and drop the explicity) andt dependence,
which is understood to exist in the scheme in a simple fashion, i.e., by fixing) andt
to be their grid values in the numerical Hamiltonian. The extension to higher dimensior
straightforward.

We approximateS(¢) by S(¢) = ¢/+/ 2 + 82, wheres is a small smoothing parameter
which can be taken aax, and denote the nodal value &f(¢) assj. We compute the
fixed quantitiesi = (n*, n¥) = (¢X/\/(¢§ + ¢$,), ¢y/\/(¢§ + ¢§)) by central differencing,

and usd; = (ni’j , ni‘ﬁ) to denote their nodal values. The above method reads

+ Gij — Gy - Gt — Gy
it = - acf ()" B o (g B

where(x)™ = max(x, 0), (x)~ = min(x, 0). The nodal values af on the stencils that the
interface cut through can be computed by interpolation [7, 9]. As pointed out in Section 2,
internal boundary condition is needed because the characteristics of the PDE (21) flow
of the interfacd™ = {x : ¢ (X, t) = 0}. This is numerically enforced naturally by the upwind
scheme, since we use only the valuepasn the nodes biased it

We consider the following example. Suppose

0
L:{(r,@):r(9)=0.1,\+o.7(1—x),x=6,059<6n}
7T

is a spiral on the domai® =[—1, 1] x [—1, 1] that orbits the origin three times. L&tbe
the region consisting of all points with distanceltdess than 128, andp be the signed
distance function associated with We use a 12& 128 grid and define a quantigywhich

is equal t& on points with distance ta<2 less thamAx and 0 otherwise. See Fig. 4 for the
result of the extension using the above scheme. Section 5 contains a more elaborate exa
that uses the extension method described in this section. This is a very successful leve
based calculation of an unstable vortex sheet, improving the results of [11] considerab

4. REINITIALIZATION

Itis numerically desirable to keefax, t) close to a signed distance function. For genera
U or uy, it is impossible to prevenp(x, t) from deviating away from a signed distance
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08+

FIG. 4. Extension. (a) Zero contour g. (b) Initial g. (c) Extend for five steps. (d) Extend for ten steps.

function, except in some very special cases [27]. Typically, flat and/or steep regions
develop at the interface, making further computation and contour plotting highly inaccurz

As an illustrative example, we consider the simple case of the shrinking of a unit circle
2D or a sphere in 3D with its mean curvature. In the level set formulation, this is equivals
to solving the following PDE:

hix, 0 = V91V - (75)
$(x,0) = x|~ 1,

(25)

This equation is rotationally invariant. This suggests that we look for solution of the for
¢ (X, 1) =¢(r, 1), wherer = |x|. We have

<9
©-

Vol =

LYo _
Vol

9 _ 193¢
{at_rr (26)

Sl o

Then Eq. (25) becomes

<
~~
‘W
o
N
Il
-
[
-
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which has the well-known solution

o(r,t) =r24+2t — 1. (27)

The interface is located at=+/1— 2t. On the interface|V¢|=+/1— 2t. Clearly,
¢ (X, t) becomes more and more flat at the interface and becomes totally flat just bef
vanishing at = 3.

Even in this simple case, a direct numerical implementation of Eq. (25) turns out to
problematic at the center, whei@g| is always zero. A spike appears at the center after or
step. See Fig. 5b. As the interface moves near to the center, the computation becomes f
inaccurate. For simple cases such as this one, we know in advance where the problen
arise, and we can kill the spike by enforcing explicitly an internal boundary condition

the center. For example,

1 1
¢o0 = §(¢71,o + ¢r0+ P01+ ¢Po1) — 1—2(4572,0 + ¢20+ Po.—2 + ¢0.2). (28)

But in general, we do not know in advance where the problem will arise, and suct
condition is hard to enforce. A reinitialization step will effectively eliminate such problern
without the explicit knowledge of their locations. This is a very important effect of level s
reinitialization. In Fig. 5, we plot the errors in computing the radius of the shrinking circ
with and without the reinitialization step, and in each case, with and without enforcing t
internal boundary condition (28).

Generally, a procedure is needed to reset the level set fungtiont) to be a signed
distance function to the froit(t). One may ask if it is legal to do so. Theoretically, this is
justified in [8] and [4], where the authors showed that the interfate= {x : ¢ (X, t) =0}
does not depend on the particular choice of the initial dgte 0), as long as its zero
level set coincides withi"(0). Reinitialization is simply the process of replacipgx, t)
by another functiorp(x, t) that has the same zero contour¢a, t) but behaves better
and then taking this new functigh(x, t) as the initial data to use until the next round of
reinitialization.

A straightforward way to reinitialize is to find the location of the front with some inter
polation technique and then compute the signed distance function to this front, as is dor
[15]. This brute force approach has the advantage that it does not move the interface
the numerical accuracy of the interpolation scheme. The disadvantage is its high cost
the likelihood of introducing some spurious irregularity into the data, making different
ated quantities such as curvature behave very badly. Some kind of smoothing procedt
usually needed to be coupled with this approach. A more elegant way is presented in |
where the following Hamilton—Jacobi type equation,

{df + S(do)(IVd| —1) =0 (29)
d(x,0) = do(x) = ¢ (X, 1),

is solved to steady state, which is the desired signed distance function. Properly im
mented, this method converges quickly in a neighborhood of the front. The reasonis q
simple. On the PDE levet] propagates with speed 1 along the characteristics that are n
mal to the interface and converges in tim® a signed distance function in a neighborhooc
of ' (t) of width €. We note that the complexity of this kind of reinitialization is proportional
to the number of grid points in theneighborhood of*(t), which is of ordeN when the
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area of the:-neighborhood occupies a small fraction of the total area. In [26], the authc
approximateds(d) by

d
NG

with e = Ax and used a second order ENO scheme [21] to approximate the space del
tives. They reported good results.

Their method generally works well whelg(x) is neither too flat nor too steep near the
interface. Wher becomes too flat, the quantig (d) above is small and the propagating
speed will be small. More steps will be needed to regetbe a signed distance function in
a neighborhood aff'(t) of fixed width. See Fig. 6a. Whaiis very steep near the interface,
this approach might change the sigrdpthus moving the interface across grid points. Se«
Fig. 7a.

Now we analyze how these issues arise and try to find ways to solve them. To keep th
simple and the idea clear, we take the 1D case and use the first order upwind schemeiin

S = (30)
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FIG. 6. Convergence rate comparison for a #fatvith different approximation td&S(¢). The initial level
set in polar coordinates is(r, ) = (r — 0.5+ 0.1r sin(76))%. Grid 128x 128, At =.5Ax. RK3-ENO3. Con-
tour taken over £10AX : 2Ax: 10AX]. (a) ApproximateS(¢) by ¢/+/¢? + Ax2. (b) ApproximateS(¢) by

®/+/ >+ (IVolAX)?.

and the forward Euler method in time discretization. Suppose the interface cuts througt
interval [x, xi 1] andd; < 0 < d; ;. After one time step, we have

dt—d + SAI<1_ d“A;d) (31)
diy1—di
dil+1 =di1+S1AT (1 - %) ; (32)

where —1<s5 <0 and O<s,; <1 are some approximations t8(dj) and S(d,1),



A PDE-BASED FAST LOCAL LEVEL SET METHOD 425

a step 0 step 5
1 1
05 0.5
O O
-0.5 -0.5
-1 -1
-1 -05 0 0.5 1 -1 -05 0 05 1
step 10 step 20
1 1
05 0.5
0 0
-0.5 -05
-1 -1
-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
b step 0 step 5
1 1
05 0.5
O | O
-05 -0.5
-1 -1
-1 -05 0 0.5 1 -1 -0.5 0 0.5 1
step 10 step 20
1 1
0.5 05
0 0
-0.5 -05
-1 -1
-1 -05 0 0.5 1 -1 -05 0 05 1

FIG. 7. For a steem, the interface is moved substantially with the approximatiosi) as (30), while
the new one given by (36) alleviates the problem quite a bit. The initial lgve] y) =x?/.32+y?/.22 -1,
and the grid is 12& 128, At =.5Ax. RK3-ENO3 is used. The contour is taken overlPAX : 2Ax : 10AX].

(a) ApproximateS(¢) by ¢/+/¢? + AX2. (b) ApproximateS(¢) by ¢/+/ ¢? + (IVP|AX)2.

respectively. The above scheme is monotone, which me&isnondecreasing id; and
di+1, when the CFL conditioit < AX is satisfied. Wheiid;, ; — di)/Ax < 1, we see that
d! <0<dl,, regardless of the choice afr, 5 ands ;. But when(di;1 —di)/Ax > 1,

if we approximateds(d) by S (d) with a uniforme as in [26], there is no guarantee that
d does not change sign. For example, if we take= cAX, di = —mAX, andd; ;1 = hAX,
we then have

-1
ot = max|—14 SMHN- D (33)
m?2 + 1
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cim+n—-1)

V/n2+1

dl, =nAx|1- (34)

One can easily pickn andn such thatd! or d', ; changes sign, no matter how smails.
To ensure thad does not change sign, we have to require

At _ ||

Ax T Axisd[1 - S5

fork=1i,i +1 (35)
In order that the above inequality does not pose a more serious restriction on time -
At than the CFL condition does, we choose the approximati&{dp as

d
S = > .
Ve + (11959 )

That is, our approximation to the sign functi®&d) depends on the local slope of

The above analysis suggests that, in the multidimensional case as well, if we use
forward Euler method in time discretization and approxinfatgx) with some discrete
operatorDd (see below), we can choose

d
S =
v/d2+ (1 — |Dd[)2Ax2

to ensure that the interface is confined to one cell in the reinitialization step. The hig
order TVD Runge—Kutta methods given by (19) and (20) are convex combinations of
first order Euler method. We need only to approximad) with thed in the previous step
andVd(x) with updatedd in each substep. Itis easy to see that the original CFL conditic
is still valid with this choice of approximation t8(d).

To put in some smoothing effects, we will use the following approximation in our con
putation;

s d (36)

\/d2 + |Dd|2AX2’

This choice ofS(d) inherits the above properties. See Figs. 6b and 7b.

The choice of approximation t8(d) by (36) solves the problem of the changing of sign
of ¢ (thus moving the interface across the cell boundary) in the reinitialization step wh
¢ is steep and speeds up the convergence wherilat at the interface.

Based onthe above analysis, we propose to solve the following Hamilton—Jacobi equat

d, dy(vdl -1 =0
{ + S(d)(Ivd| — 1) (37)
d(x,0) = do(X) = ¢ (X, 1),
to steady state, witB(d) approximated by (36).
There are two canonical monotone upwind schemes which have been frequently use
[20] a variant of the Engquist—Osher scheme developed for scalar conservation laws
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suggested. In our case it becomes

A
= df — A—;qlf(\/(aﬂZ (0 )2+ (ChHZ+ (d)2-1)

- gsj (V(@)2+ (bH2+ (c)2 + (dH)2 - 1), (38)
wheres; is the approximation t&(dj}) with (36);a, b, ¢, d are defined by
a= Dyd}, b=Dyd}
c=D,dj, d=Dyd].
Scheme (38) is easily seen to be monotone; i.e., the right side of (3.3) is a nondecree
function of all thed]}, if
1

| < > (39)

At
Bl&]
This is also upwind, which means that away from sonic points (for those with eith
S(d)dy, =0 or S(d)dy, = 0) the scheme has a domain of dependence which is in the sa
direction as that of the characteristics.
The second and most canonical example is Godunov’s scheme, described abstrac
[21]; see also [3], whose realization for this problem is

ditt =df - %sjf(\/max[(a+)2, (b)?] + min[(ct)2, (d)?] — 1)

B %3}(\/max[(a*)2, (b™)2] + min[(c)2, (d+)?] — 1), (40)

which is also monotone and upwind with the same time step restriction and is slightly |
dissipative near sonic points.

If we start each iteration of our main time step with a distance function, the reinitializati
typically takes only one or two iterations within the tube.

For simplicity, we described the above two schemes using forward Euler time discreti
tion. In actual computation, we can use a TVD-type Runge—Kutta scheme. See Egs.
and (20) in Section 2. The one-sided differen&&sd;;, Did;; are computed with ENO
[21] or WENO [13] schemes for Hamilton—Jacobi equations.

A very important practical question is when to start our reinitialization step. Shall v
do it every time step? There is no simple answer that applies generally. Reinitializat
every time step is necessary when the interface undergoes a rapid changel@ndtes
dramatically away from the signed distance function. Otherwise this is excessive. What
need is some way of monitoring this process to trigger the reinitialization automatically.
our computation, we choose to monitor two factors: whether the average slpplevfates
from 1 substantially and whether the interface moves near the boundary of thg {ifbe
three tubes are used). (This is another reason to have a middle tube.) If one of these
signals is activated, we start the reinitialization procedure immediately. However, this is
very reliable. If the reinitialization is not triggered by the above monitoring procedure af
a fixed number of time steps, it still needs to be executed. Since the monitoring procedu
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FIG. 8. Data on the left are computed with global method, while those on the right are computed with lo
method. Grid 128 128, RK3-ENO3. (a) Percentage of area loss. (b) Percentage of arclength loss. (c) Devia
from 1 of defect ratio.

only done within a narrow tube with central differencing, the cost of doing this is minime
We have found this approach works well in our computation. See Section 5 for so
numerical examples.

To summarize, our reinitialization step consists of several steps of the PDE solver
(29), with the sign function approximated as discussed above.
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5. NUMERICAL RESULTS

Inthis section, we present some numerical examples that use one or more of the techni
presented in the previous sections and compare the results and performances with
obtained by global level set method. All the computations below are performed on a ¢
Sparc-10 workstation.
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FIG. 9. Volume conserved mean curvature flow. Grid 22828, RK3-WENOS5. (a) Initial front. (b) After
200 steps. (c) After 400 steps. (d) After 1600 steps. (e) Area. (f) Arclength.
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TABLE 1
Comparison of Global and Local Level Set Methods for Example 1

Mesh size Global O(N?) Local O(N) Global/Local
32x 32 0.03269 0.01986 1.646
64 x 64 0.1416 4.332 0.04221 2.1225 4.6451

128x 128 0.9366 6.614 0.09511 2.253 7.3221

256 x 256 4.35 4.64 0.2246 2.363 9.2933

ExamMpPLE 1. We compare the performances between our local level set method e
global level set method on the following problem. We rotate a circle around the origin twic
The circle is initially centered a0.5, 0), with radius 025. The computation is performed
on the domairD =[—1, 1] x [—1, 1], with RK3-ENO3. A reinitialization is performed for
three steps in every main time step, also using RK3-ENQO3. In the level set formulati
this is equivalent to solve the following equation:

&t — Yox + Xy = 0. (41)

Table 1 tabulates the CPU time (in seconds) used in each step for the global method
the local method described in Section 2 and their ratios. This table clearly showsthe
behavior of our local level set method.

The quality of the numerical solutions is measured by three factors, namely, the loss of :
A, the loss of arclength (in percentages), and the isoperimetric defect @tio L2/ (47 A).
The defect ratidR measures how far the shapes deviated from a circle. For a ditelel,,
and R > 1 for any other shape. Because of numerical errors in the algorithms we use
compute the area and arclength, the defect ratios computed are all smaller than 1, bt
pretty close to 1. See Table 2. In Fig. 8, we plot the loss of area and arclength (in percent
and the deviation of defect ratio from 1 in the results computed by local and global mett
for a grid of size 128« 128.

ExaMPLE 2. We testourlocal level set algorithm on volume-preserving mean curvatu
flow,

¢t = (k — )|V, (42)

TABLE 2
Area, Arclength Loss, and Defect Ratio for Global Algorithm and Local (Fast)
Algorithm in Example 1

Global Local

Meshsize Arealoss Lengthloss Defectratio Arealoss Lengthloss Defectratio

32x 32 57.3 37.4 0.9174 57.3 37.4 0.9174
64 x 64 13.6 7.45 0.9908 135 7.42 0.9910
128x 128 4.88 2.64 0.9964 4.87 2.64 0.9964

256x 256 0.48 0.36 0.9977 117 0.69 0.9980
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wherex is the mean curvature anrdis the average mean curvature on the front which ca
be computed by

Jx3(9)| Vel dx
J8@)IVeldx

K= (43)

To test the performance of our local level set method, two different initial conditiot
are used in our test. In the first case, the initial front is a spiral as we have used in
extension example in Section 2. In Fig. 9, we plot the fronts at different steps and the ¢
(which should stay constant) and arclength against the computational steps. In the se
case, the initial fronts are 100 bubbles spread ovér [L] x [—1, 1], with centers and radii
produced by a random number generator. We computed the total area, the total arclel
and the approximate number of bubbles by

N = % /K8(¢)|V¢|dx. (44)

The results are shown in Fig. 10. With a 128128 grids, we lose about 4% of the area
after 1600 steps. The same computations are also performed with global level set met
No distinguishable differences are noticed between the results of the global and our |
methods.

For complexity analysis, we applied our local level set method to this problem wi
various initial shapes in 2D, namely a circle, an ellipse, a square, a star (see Examy
below) and the spiral mentioned above. We also simulated the 3D problem of a dumb
collapsing under its mean curvature for which pinch-off occurs. Table 3 tabulates the C
time (in seconds) per time step for a different number of grid points and different initi
shapes, which clearly demonstrated eN) complexity of our local method in 2D and
O(N?) complexity in 3D.

ExampPLE 3. In this example, we test our extension and reinitialization algorithms di
cussed in Sections 3 and 4 on the vortex sheet problem. Details of this problem in the |
set formulation are contained in [11]. We briefly summarize it here.

The 2D incompressible Euler equation in vorticity-streamline formulation is

wt + Uwy + Vwy = O, (45)
curl(u, v) = o, (46)
div(u, v) = 0, 47

wherew is vorticity andu andv are the two components of the fluid velocity.

TABLE 3
Complexity Analysis of the Local Level Set Method for Example 2

Mesh Circle Ellipse Square Star Spiral Dumbbell

32 1.7e-2 2.4e-2 3.6e-2 4.3e-2 5.8e-2 0.4

64 40e-2 23 49e2 21 79e2 22 12e1 27 15e1 25 2.4 5.
128 83e-2 21 1lel 23 18e-l1 23 28e-l 24 44e1 29 107 4.t
256 23e-1 28 3le-l 27 48e-1 27 791 28 11 2.6
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Supposev is only concentrated on a thin curve called a vortex sheet, and let
® = 8(¢)n (48)

whereg is the level set function associated with the vortex sheetjaad parameter that
is related to the strength of vorticity
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Inserting Eq. (48) into (45), and equating the coefficient&(@) ands’(¢) terms, we get

¢t + Upy + vy = 0, (49)
Nt + Uny + vny = 0. (50)

Introduce the streamline functiaf, such that

u=1vy, v=—x (51)

From Eg. (46) we get the following equation for.

Yxx + Iﬁyy = —3(¢)n. (52)

Note thaty itself does not make physical sense, sif@g) is not invariant in the sense
that¢ can be replaced blg(¢) for a functionh that satisfied” > 0 andh(0) = 0 without
changing its value. But(¢)|V¢]| is invariant. Hence /| V¢| is the strength of the vorticity.
This gives us the following transformation 9ff ¢ is changed t@ that corresponds to the
same interface:

. Vel
1=V (53)
This relation is used in the reinitialization @f Another issue that concernsis thatn
only makes sense on the vortex sheet, i.e., the zero level geBuaft to update;, we need
its value in a neighborhood of the interface. This problem can be solved by the exten:
procedure we described in Section 3.

Our computation is performed on a rectangulae[—1, 1] x [—1, 1]. The boundary

conditions foryr, ¢, andn are:
1. ¢ is periodic inx, andy (X, 1) =y (x, —1) =0.
2. ¢ is periodic inx, and¢ (x, +1,t) = ¢(x, —1,t) + 2.
3. nis periodic in bothx andy.

The initial conditions for andn are

¢ (X,y,0) = y+ 0.05sin7x),
n(x,y,0 =1

The choice for the approximation to delta function is
1 TP H
8() =1 2 9 . (54)
0 otherwise

wheree is a small parameter that is proportional to mesh aize In our computation, we
use a 128« 128 grid, withe = 12Ax as in [11] and RK3-WENOS5 in main time step and
reinitialization. The Laplace equation (52) is solved by the FISHPACK routimscrt.f
Since the cost of updatinfgandy is only a small fraction of the cost of solving the Laplace
equation, a global level set method is used here. See Figs. 11 and 12 for the remar}
results. In particular, we obtain numerous turns without spurious wiggles. With only t
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FIG. 11. \Vortex sheet problemat =0.1AX. (a) Without reinitialization and extension. (b) With reinitializa-

tion and extension every 10 time steps.

reinitialization but without the extension step, the computation blows up quickly. The reas
for this is that in the rescaling afusing (53),; is not well defined at the grid points where
the gradient ofp vanishes. The data near the front is polluted by the data over these g
points, especially when the front rolls up, making further computation hard to proceed.
extension step will assign meaningful values to these grid points.

The next two examples showed a comparable savings of one order of magnitude in |

and global level set calculations.

-1

-1 0

1
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FIG. 12. Vortex sheet problem. The vorticity at tinhe=4.5.

ExamPLE 4. We test our local level set algorithm on the motion with curvature depe
dent acceleration. The general equation governing the motion is

= _[p]n—GKn+f_Mu(1d|dA| 1du>’

Fat = dA dt ' pdt
where
m{ﬁd"i?:Vu—n-Dwn
and
(ol = Jo (V-w)(u-n)—(u-Vu)-n— 5(“ —f.-n—F. n))8(¢)|V¢|dQ’
Jo :3(@)IVeldQ
where

_ 1 d(dA) 1
F= ““<|dA| at +,udt)

and f can be determined depending on the property of the motion. For the details, see |
See Fig. 13 for the numerical results.

ExaMPLE 5. Inthis example, we apply the local level set method to the 3D double bu
ble minimizer calculation. Initially, a dumbbell-shaped bubble is surrounded by a doughn
shaped bubble, and the bubbles are in the air. The total surface energy is the integr
of the surface tension along the bubble surface. Surface tension can be prescribed
different at interfaces between bubble and bubble and bubble and air. We are interest
finding the shape which minimizes the total surface energy while keeping the volume
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FIG. 13. Oscillating starfish, curvature dependent acceleration (volume preserving). Initial shape is givel
polar coordinates by=0.5+ 0.3sin 5.

FIG. 14. Middle slice of the 3D double bubble minimizer problem. The surface tension of the dumbbell
smaller than that of the doughnut.
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each bubble fixed. Three level sets are used, nagfgr the air,¢, for the dumbbell, and
¢ for the doughnut. We try to minimize

2
E= Z/V'(S(‘ﬁl (X))|V¢i (X)|dX (55)
i=0

subjectto nonoverlap and volume conservation constraints. Hepgdlage surface tension.
Details can be found in [28].

In our calculation, the surface tension of the doughnut-shaped bubble is taken to be bi

than that of dumbbell-shaped bubble. Figure 14 is the contour plot of the dumbbell-sha
bubble taken on a cross section. Note that we did not cut the level set function to be con:
outside the tube around the interface. We see that the dumbbell-shaped bubble is clj

in

two. We also see that only in a neighborhood of the interface the level set functior

very close to a distance function. Contours that are far away from the interface are not e

to
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11.

12.
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uched.
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